wlsunset/main.c

521 lines
13 KiB
C

#include <assert.h>
#include <errno.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <unistd.h>
#include <wayland-client-protocol.h>
#include <wayland-client.h>
#include <time.h>
#include <poll.h>
#include "wlr-gamma-control-unstable-v1-client-protocol.h"
#include "color_math.h"
#if defined(SPEEDRUN)
static inline int wait_adjust(int wait) {
fprintf(stderr, "wait in termina: %d seconds\n", wait / 1000);
return wait / 1000;
}
static time_t get_time_sec(time_t *tloc) {
static time_t start = 0;
static time_t monostart = 0;
if (start == 0) {
start = time(tloc);
}
struct timespec monotime;
clock_gettime(CLOCK_MONOTONIC, &monotime);
time_t now = monotime.tv_sec * 1000 + monotime.tv_nsec / 1000000;
if (monostart == 0) {
monostart = now;
}
now = now - monostart + start;
struct tm tm;
localtime_r(&now, &tm);
fprintf(stderr, "time in termina: %02d:%02d:%02d\n", tm.tm_hour, tm.tm_min, tm.tm_sec);
return now;
}
#else
static inline int wait_adjust(int wait) {
return wait;
}
static inline time_t get_time_sec(time_t *tloc) {
return time(tloc);
}
#endif
static const int LONG_SLEEP_MS = 600 * 1000;
static const int MAX_SLEEP_S = 1800;
static const int MIN_SLEEP_S = 10;
enum state {
HIGH_TEMP,
ANIMATING_TO_LOW,
LOW_TEMP,
ANIMATING_TO_HIGH,
};
static char *state_names[] = {
"high temperature",
"animating to low temperature",
"low temperature",
"animating to high temperature",
NULL
};
struct context {
double gamma;
int high_temp;
int low_temp;
int duration;
double longitude;
double latitude;
time_t start_time;
time_t stop_time;
int cur_temp;
enum state state;
bool new_output;
struct wl_list outputs;
};
struct output {
struct context *context;
struct wl_output *wl_output;
uint32_t id;
struct zwlr_gamma_control_v1 *gamma_control;
uint32_t ramp_size;
int table_fd;
uint16_t *table;
struct wl_list link;
};
static struct zwlr_gamma_control_manager_v1 *gamma_control_manager = NULL;
static int create_anonymous_file(off_t size) {
char template[] = "/tmp/wlsunset-shared-XXXXXX";
int fd = mkstemp(template);
if (fd < 0) {
return -1;
}
int ret;
do {
errno = 0;
ret = ftruncate(fd, size);
} while (errno == EINTR);
if (ret < 0) {
close(fd);
return -1;
}
unlink(template);
return fd;
}
static int create_gamma_table(uint32_t ramp_size, uint16_t **table) {
size_t table_size = ramp_size * 3 * sizeof(uint16_t);
int fd = create_anonymous_file(table_size);
if (fd < 0) {
fprintf(stderr, "failed to create anonymous file\n");
return -1;
}
void *data =
mmap(NULL, table_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if (data == MAP_FAILED) {
fprintf(stderr, "failed to mmap()\n");
close(fd);
return -1;
}
*table = data;
return fd;
}
static void gamma_control_handle_gamma_size(void *data,
struct zwlr_gamma_control_v1 *gamma_control, uint32_t ramp_size) {
(void)gamma_control;
struct output *output = data;
output->ramp_size = ramp_size;
if (output->table_fd != -1) {
close(output->table_fd);
}
output->table_fd = create_gamma_table(ramp_size, &output->table);
output->context->new_output = true;
if (output->table_fd < 0) {
fprintf(stderr, "could not create gamma table for output %d\n",
output->id);
exit(EXIT_FAILURE);
}
}
static void gamma_control_handle_failed(void *data,
struct zwlr_gamma_control_v1 *gamma_control) {
(void)gamma_control;
struct output *output = data;
fprintf(stderr, "gamma control of output %d failed\n",
output->id);
zwlr_gamma_control_v1_destroy(output->gamma_control);
output->gamma_control = NULL;
if (output->table_fd != -1) {
close(output->table_fd);
output->table_fd = -1;
}
}
static const struct zwlr_gamma_control_v1_listener gamma_control_listener = {
.gamma_size = gamma_control_handle_gamma_size,
.failed = gamma_control_handle_failed,
};
static void setup_output(struct output *output) {
if (output->gamma_control != NULL) {
return;
}
if (gamma_control_manager == NULL) {
fprintf(stderr, "skipping setup of output %d: gamma_control_manager missing\n",
output->id);
return;
}
output->gamma_control = zwlr_gamma_control_manager_v1_get_gamma_control(
gamma_control_manager, output->wl_output);
zwlr_gamma_control_v1_add_listener(output->gamma_control,
&gamma_control_listener, output);
}
static void registry_handle_global(void *data, struct wl_registry *registry,
uint32_t name, const char *interface, uint32_t version) {
(void)version;
struct context *ctx = (struct context *)data;
if (strcmp(interface, wl_output_interface.name) == 0) {
fprintf(stderr, "adding output %d\n", name);
struct output *output = calloc(1, sizeof(struct output));
output->id = name;
output->wl_output = wl_registry_bind(registry, name,
&wl_output_interface, 1);
output->table_fd = -1;
output->context = ctx;
wl_list_insert(&ctx->outputs, &output->link);
setup_output(output);
} else if (strcmp(interface,
zwlr_gamma_control_manager_v1_interface.name) == 0) {
gamma_control_manager = wl_registry_bind(registry, name,
&zwlr_gamma_control_manager_v1_interface, 1);
}
}
static void registry_handle_global_remove(void *data,
struct wl_registry *registry, uint32_t name) {
(void)registry;
struct context *ctx = (struct context *)data;
struct output *output, *tmp;
wl_list_for_each_safe(output, tmp, &ctx->outputs, link) {
if (output->id == name) {
fprintf(stderr, "removing output %d\n", name);
wl_list_remove(&output->link);
if (output->gamma_control != NULL) {
zwlr_gamma_control_v1_destroy(output->gamma_control);
}
if (output->table_fd != -1) {
close(output->table_fd);
}
free(output);
break;
}
}
}
static const struct wl_registry_listener registry_listener = {
.global = registry_handle_global,
.global_remove = registry_handle_global_remove,
};
static void fill_gamma_table(uint16_t *table, uint32_t ramp_size, double rw, double gw, double bw, double gamma) {
uint16_t *r = table;
uint16_t *g = table + ramp_size;
uint16_t *b = table + 2 * ramp_size;
for (uint32_t i = 0; i < ramp_size; ++i) {
double val = (double)i / (ramp_size - 1);
r[i] = (uint16_t)(UINT16_MAX * pow(val * rw, 1.0 / gamma));
g[i] = (uint16_t)(UINT16_MAX * pow(val * gw, 1.0 / gamma));
b[i] = (uint16_t)(UINT16_MAX * pow(val * bw, 1.0 / gamma));
}
}
static void set_temperature(struct context *ctx) {
double rw, gw, bw;
calc_whitepoint(ctx->cur_temp, &rw, &gw, &bw);
fprintf(stderr, "setting temperature: %d\n", ctx->cur_temp);
struct output *output;
wl_list_for_each(output, &ctx->outputs, link) {
if (output->gamma_control == NULL || output->table_fd == -1) {
continue;
}
fill_gamma_table(output->table, output->ramp_size,
rw, gw, bw, ctx->gamma);
lseek(output->table_fd, 0, SEEK_SET);
zwlr_gamma_control_v1_set_gamma(output->gamma_control,
output->table_fd);
}
}
static void recalc_stops(struct context *ctx, time_t now) {
time_t day = now - (now % 86400);
time_t true_end = ctx->stop_time + ctx->duration;
if (ctx->stop_time == 0) {
// First calculation
} else if (now > true_end) {
day += 86400;
} else if (day < true_end) {
return;
}
struct tm tm = { 0 };
gmtime_r(&now, &tm);
sun(&tm, ctx->longitude, ctx->latitude, &ctx->start_time, &ctx->stop_time);
ctx->start_time += day;
ctx->stop_time += day;
struct tm sunrise, sunset;
localtime_r(&ctx->start_time, &sunrise);
localtime_r(&ctx->stop_time, &sunset);
fprintf(stderr, "calculated new sun trajectory: sunrise %02d:%02d, sunset %02d:%02d\n",
sunrise.tm_hour, sunrise.tm_min,
sunset.tm_hour, sunset.tm_min);
ctx->stop_time -= ctx->duration;
}
static void update_temperature(struct context *ctx, time_t now) {
int temp = 0, temp_pos;
double time_pos;
recalc_stops(ctx, now);
enum state old_state = ctx->state;
switch (ctx->state) {
start:
case HIGH_TEMP:
if (now <= ctx->stop_time && now > ctx->start_time + ctx->duration) {
temp = ctx->high_temp;
break;
}
ctx->state = ANIMATING_TO_LOW;
// fallthrough
case ANIMATING_TO_LOW:
if (now > ctx->start_time && now <= ctx->stop_time + ctx->duration) {
time_pos = clamp(((double)now - (double)ctx->stop_time) / (double)ctx->duration);
temp_pos = (double)(ctx->high_temp - ctx->low_temp) * time_pos;
temp = ctx->high_temp - temp_pos;
break;
}
ctx->state = LOW_TEMP;
// fallthrough
case LOW_TEMP:
if (now > ctx->stop_time + ctx->duration || now <= ctx->start_time) {
temp = ctx->low_temp;
break;
}
ctx->state = ANIMATING_TO_HIGH;
// fallthrough
case ANIMATING_TO_HIGH:
if (now <= ctx->start_time + ctx->duration) {
time_pos = clamp(((double)now - (double)ctx->start_time) / (double)ctx->duration);
temp_pos = (double)(ctx->high_temp - ctx->low_temp) * time_pos;
temp = ctx->low_temp + temp_pos;
break;
}
ctx->state = HIGH_TEMP;
goto start;
}
if (ctx->state != old_state) {
fprintf(stderr, "changed state: %s\n", state_names[ctx->state]);
}
if (temp != ctx->cur_temp || ctx->new_output) {
ctx->cur_temp = temp;
ctx->new_output = false;
set_temperature(ctx);
}
}
static int increments(struct context *ctx, int from, int to) {
int temp_diff = to - from;
assert(temp_diff > 0);
int time = ctx->duration * 25000 / temp_diff;
return time > LONG_SLEEP_MS ? LONG_SLEEP_MS : time;
}
static int time_to_next_event(struct context *ctx, time_t now) {
time_t deadline;
switch (ctx->state) {
case HIGH_TEMP:
deadline = ctx->stop_time;
break;
case LOW_TEMP:
deadline = ctx->start_time;
if (deadline < now) {
deadline = ((deadline / 86400 + 1) * 86400);
}
break;
case ANIMATING_TO_HIGH:
case ANIMATING_TO_LOW:
return increments(ctx, ctx->low_temp, ctx->high_temp);
default:
return LONG_SLEEP_MS;
}
if (deadline <= now) {
return LONG_SLEEP_MS;
}
time_t wait = deadline - now;
if (wait > MAX_SLEEP_S) {
wait = MAX_SLEEP_S;
} else if (wait < MIN_SLEEP_S) {
wait = MIN_SLEEP_S;
}
return wait * 1000;
}
static int display_poll(struct wl_display *display, short int events, int timeout) {
struct pollfd pfd[1];
pfd[0].fd = wl_display_get_fd(display);
pfd[0].events = events;
return poll(pfd, 1, timeout);
}
static int display_dispatch_with_timeout(struct wl_display *display, int timeout) {
if (wl_display_prepare_read(display) == -1) {
return wl_display_dispatch_pending(display);
}
int ret;
while (true) {
ret = wl_display_flush(display);
if (ret != -1 || errno != EAGAIN) {
break;
}
if (display_poll(display, POLLOUT, -1) == -1) {
wl_display_cancel_read(display);
return -1;
}
}
if (ret < 0 && errno != EPIPE) {
wl_display_cancel_read(display);
return -1;
}
if (display_poll(display, POLLIN, timeout) == -1) {
wl_display_cancel_read(display);
return -1;
}
if (wl_display_read_events(display) == -1) {
return -1;
}
return wl_display_dispatch_pending(display);
}
static const char usage[] = "usage: %s [options]\n"
" -h show this help message\n"
" -T <temp> set high temperature (default: 6500)\n"
" -t <temp> set low temperature (default: 4000)\n"
" -l <lat> set latitude (e.g. 39.9)\n"
" -L <long> set longitude (e.g. 116.3)\n"
" -d <minutes> set ramping duration in minutes (default: 60)\n"
" -g <gamma> set gamma (default: 1.0)\n";
int main(int argc, char *argv[]) {
tzset();
// Initialize defaults
struct context ctx = {
.gamma = 1.0,
.high_temp = 6500,
.low_temp = 4000,
.duration = 3600,
.state = HIGH_TEMP,
};
wl_list_init(&ctx.outputs);
int opt;
while ((opt = getopt(argc, argv, "hT:t:g:d:l:L:")) != -1) {
switch (opt) {
case 'T':
ctx.high_temp = strtol(optarg, NULL, 10);
break;
case 't':
ctx.low_temp = strtol(optarg, NULL, 10);
break;
case 'l':
ctx.latitude = strtod(optarg, NULL);
break;
case 'L':
ctx.longitude = strtod(optarg, NULL);
break;
case 'd':
ctx.duration = strtod(optarg, NULL) * 60;
break;
case 'g':
ctx.gamma = strtod(optarg, NULL);
break;
case 'h':
default:
fprintf(stderr, usage, argv[0]);
return opt == 'h' ? EXIT_SUCCESS : EXIT_FAILURE;
}
}
if (ctx.high_temp == ctx.low_temp) {
fprintf(stderr, "high (%d) and low (%d) temperature must not be identical\n",
ctx.high_temp, ctx.low_temp);
return -1;
}
struct wl_display *display = wl_display_connect(NULL);
if (display == NULL) {
fprintf(stderr, "failed to create display\n");
return -1;
}
struct wl_registry *registry = wl_display_get_registry(display);
wl_registry_add_listener(registry, &registry_listener, &ctx);
wl_display_roundtrip(display);
if (gamma_control_manager == NULL) {
fprintf(stderr,
"compositor doesn't support wlr-gamma-control-unstable-v1\n");
return EXIT_FAILURE;
}
struct output *output;
wl_list_for_each(output, &ctx.outputs, link) {
setup_output(output);
}
wl_display_roundtrip(display);
time_t now = get_time_sec(NULL);
update_temperature(&ctx, now);
while (display_dispatch_with_timeout(display, wait_adjust(time_to_next_event(&ctx, now))) != -1) {
now = get_time_sec(NULL);
update_temperature(&ctx, now);
}
return EXIT_SUCCESS;
}