#include #include #include #include #include #include #include #include #include #include #include #include #include #include "wlr-gamma-control-unstable-v1-client-protocol.h" #include "color_math.h" #if defined(SPEEDRUN) static inline int wait_adjust(int wait) { fprintf(stderr, "wait in termina: %d seconds\n", wait / 1000); return wait / 1000; } static time_t get_time_sec(time_t *tloc) { static time_t start = 0; static time_t monostart = 0; if (start == 0) { start = time(tloc); } struct timespec monotime; clock_gettime(CLOCK_MONOTONIC, &monotime); time_t now = monotime.tv_sec * 1000 + monotime.tv_nsec / 1000000; if (monostart == 0) { monostart = now; } now = now - monostart + start; struct tm tm; localtime_r(&now, &tm); fprintf(stderr, "time in termina: %02d:%02d:%02d\n", tm.tm_hour, tm.tm_min, tm.tm_sec); return now; } #else static inline int wait_adjust(int wait) { return wait; } static inline time_t get_time_sec(time_t *tloc) { return time(tloc); } #endif static const int LONG_SLEEP_MS = 600 * 1000; static const int MAX_SLEEP_S = 1800; static const int MIN_SLEEP_S = 10; enum state { HIGH_TEMP, ANIMATING_TO_LOW, LOW_TEMP, ANIMATING_TO_HIGH, }; static char *state_names[] = { "high temperature", "animating to low temperature", "low temperature", "animating to high temperature", NULL }; struct context { double gamma; int high_temp; int low_temp; int duration; double longitude; double latitude; time_t start_time; time_t stop_time; int cur_temp; enum state state; bool new_output; struct wl_list outputs; }; struct output { struct context *context; struct wl_output *wl_output; uint32_t id; struct zwlr_gamma_control_v1 *gamma_control; uint32_t ramp_size; int table_fd; uint16_t *table; struct wl_list link; }; static struct zwlr_gamma_control_manager_v1 *gamma_control_manager = NULL; static int create_anonymous_file(off_t size) { char template[] = "/tmp/wlsunset-shared-XXXXXX"; int fd = mkstemp(template); if (fd < 0) { return -1; } int ret; do { errno = 0; ret = ftruncate(fd, size); } while (errno == EINTR); if (ret < 0) { close(fd); return -1; } unlink(template); return fd; } static int create_gamma_table(uint32_t ramp_size, uint16_t **table) { size_t table_size = ramp_size * 3 * sizeof(uint16_t); int fd = create_anonymous_file(table_size); if (fd < 0) { fprintf(stderr, "failed to create anonymous file\n"); return -1; } void *data = mmap(NULL, table_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if (data == MAP_FAILED) { fprintf(stderr, "failed to mmap()\n"); close(fd); return -1; } *table = data; return fd; } static void gamma_control_handle_gamma_size(void *data, struct zwlr_gamma_control_v1 *gamma_control, uint32_t ramp_size) { (void)gamma_control; struct output *output = data; output->ramp_size = ramp_size; if (output->table_fd != -1) { close(output->table_fd); } output->table_fd = create_gamma_table(ramp_size, &output->table); output->context->new_output = true; if (output->table_fd < 0) { fprintf(stderr, "could not create gamma table for output %d\n", output->id); exit(EXIT_FAILURE); } } static void gamma_control_handle_failed(void *data, struct zwlr_gamma_control_v1 *gamma_control) { (void)gamma_control; struct output *output = data; fprintf(stderr, "gamma control of output %d failed\n", output->id); zwlr_gamma_control_v1_destroy(output->gamma_control); output->gamma_control = NULL; if (output->table_fd != -1) { close(output->table_fd); output->table_fd = -1; } } static const struct zwlr_gamma_control_v1_listener gamma_control_listener = { .gamma_size = gamma_control_handle_gamma_size, .failed = gamma_control_handle_failed, }; static void setup_output(struct output *output) { if (output->gamma_control != NULL) { return; } if (gamma_control_manager == NULL) { fprintf(stderr, "skipping setup of output %d: gamma_control_manager missing\n", output->id); return; } output->gamma_control = zwlr_gamma_control_manager_v1_get_gamma_control( gamma_control_manager, output->wl_output); zwlr_gamma_control_v1_add_listener(output->gamma_control, &gamma_control_listener, output); } static void registry_handle_global(void *data, struct wl_registry *registry, uint32_t name, const char *interface, uint32_t version) { (void)version; struct context *ctx = (struct context *)data; if (strcmp(interface, wl_output_interface.name) == 0) { fprintf(stderr, "adding output %d\n", name); struct output *output = calloc(1, sizeof(struct output)); output->id = name; output->wl_output = wl_registry_bind(registry, name, &wl_output_interface, 1); output->table_fd = -1; output->context = ctx; wl_list_insert(&ctx->outputs, &output->link); setup_output(output); } else if (strcmp(interface, zwlr_gamma_control_manager_v1_interface.name) == 0) { gamma_control_manager = wl_registry_bind(registry, name, &zwlr_gamma_control_manager_v1_interface, 1); } } static void registry_handle_global_remove(void *data, struct wl_registry *registry, uint32_t name) { (void)registry; struct context *ctx = (struct context *)data; struct output *output, *tmp; wl_list_for_each_safe(output, tmp, &ctx->outputs, link) { if (output->id == name) { fprintf(stderr, "removing output %d\n", name); wl_list_remove(&output->link); if (output->gamma_control != NULL) { zwlr_gamma_control_v1_destroy(output->gamma_control); } if (output->table_fd != -1) { close(output->table_fd); } free(output); break; } } } static const struct wl_registry_listener registry_listener = { .global = registry_handle_global, .global_remove = registry_handle_global_remove, }; static void fill_gamma_table(uint16_t *table, uint32_t ramp_size, double rw, double gw, double bw, double gamma) { uint16_t *r = table; uint16_t *g = table + ramp_size; uint16_t *b = table + 2 * ramp_size; for (uint32_t i = 0; i < ramp_size; ++i) { double val = (double)i / (ramp_size - 1); r[i] = (uint16_t)(UINT16_MAX * pow(val * rw, 1.0 / gamma)); g[i] = (uint16_t)(UINT16_MAX * pow(val * gw, 1.0 / gamma)); b[i] = (uint16_t)(UINT16_MAX * pow(val * bw, 1.0 / gamma)); } } static void set_temperature(struct context *ctx) { double rw, gw, bw; calc_whitepoint(ctx->cur_temp, &rw, &gw, &bw); fprintf(stderr, "setting temperature: %d\n", ctx->cur_temp); struct output *output; wl_list_for_each(output, &ctx->outputs, link) { if (output->gamma_control == NULL || output->table_fd == -1) { continue; } fill_gamma_table(output->table, output->ramp_size, rw, gw, bw, ctx->gamma); lseek(output->table_fd, 0, SEEK_SET); zwlr_gamma_control_v1_set_gamma(output->gamma_control, output->table_fd); } } static void recalc_stops(struct context *ctx, time_t now) { time_t day = now - (now % 86400); time_t true_end = ctx->stop_time + ctx->duration; if (ctx->stop_time == 0) { // First calculation } else if (now > true_end) { day += 86400; } else if (day < true_end) { return; } struct tm tm = { 0 }; gmtime_r(&now, &tm); sun(&tm, ctx->longitude, ctx->latitude, &ctx->start_time, &ctx->stop_time); ctx->start_time += day; ctx->stop_time += day; struct tm sunrise, sunset; localtime_r(&ctx->start_time, &sunrise); localtime_r(&ctx->stop_time, &sunset); fprintf(stderr, "calculated new sun trajectory: sunrise %02d:%02d, sunset %02d:%02d\n", sunrise.tm_hour, sunrise.tm_min, sunset.tm_hour, sunset.tm_min); ctx->stop_time -= ctx->duration; } static void update_temperature(struct context *ctx, time_t now) { int temp = 0, temp_pos; double time_pos; recalc_stops(ctx, now); enum state old_state = ctx->state; switch (ctx->state) { start: case HIGH_TEMP: if (now <= ctx->stop_time && now > ctx->start_time + ctx->duration) { temp = ctx->high_temp; break; } ctx->state = ANIMATING_TO_LOW; // fallthrough case ANIMATING_TO_LOW: if (now > ctx->start_time && now <= ctx->stop_time + ctx->duration) { time_pos = clamp(((double)now - (double)ctx->stop_time) / (double)ctx->duration); temp_pos = (double)(ctx->high_temp - ctx->low_temp) * time_pos; temp = ctx->high_temp - temp_pos; break; } ctx->state = LOW_TEMP; // fallthrough case LOW_TEMP: if (now > ctx->stop_time + ctx->duration || now <= ctx->start_time) { temp = ctx->low_temp; break; } ctx->state = ANIMATING_TO_HIGH; // fallthrough case ANIMATING_TO_HIGH: if (now <= ctx->start_time + ctx->duration) { time_pos = clamp(((double)now - (double)ctx->start_time) / (double)ctx->duration); temp_pos = (double)(ctx->high_temp - ctx->low_temp) * time_pos; temp = ctx->low_temp + temp_pos; break; } ctx->state = HIGH_TEMP; goto start; } if (ctx->state != old_state) { fprintf(stderr, "changed state: %s\n", state_names[ctx->state]); } if (temp != ctx->cur_temp || ctx->new_output) { ctx->cur_temp = temp; ctx->new_output = false; set_temperature(ctx); } } static int increments(struct context *ctx, int from, int to) { int temp_diff = to - from; assert(temp_diff > 0); int time = ctx->duration * 25000 / temp_diff; return time > LONG_SLEEP_MS ? LONG_SLEEP_MS : time; } static int time_to_next_event(struct context *ctx, time_t now) { time_t deadline; switch (ctx->state) { case HIGH_TEMP: deadline = ctx->stop_time; break; case LOW_TEMP: deadline = ctx->start_time; if (deadline < now) { deadline = ((deadline / 86400 + 1) * 86400); } break; case ANIMATING_TO_HIGH: case ANIMATING_TO_LOW: return increments(ctx, ctx->low_temp, ctx->high_temp); default: return LONG_SLEEP_MS; } if (deadline <= now) { return LONG_SLEEP_MS; } time_t wait = deadline - now; if (wait > MAX_SLEEP_S) { wait = MAX_SLEEP_S; } else if (wait < MIN_SLEEP_S) { wait = MIN_SLEEP_S; } return wait * 1000; } static int display_poll(struct wl_display *display, short int events, int timeout) { struct pollfd pfd[1]; pfd[0].fd = wl_display_get_fd(display); pfd[0].events = events; return poll(pfd, 1, timeout); } static int display_dispatch_with_timeout(struct wl_display *display, int timeout) { if (wl_display_prepare_read(display) == -1) { return wl_display_dispatch_pending(display); } int ret; while (true) { ret = wl_display_flush(display); if (ret != -1 || errno != EAGAIN) { break; } if (display_poll(display, POLLOUT, -1) == -1) { wl_display_cancel_read(display); return -1; } } if (ret < 0 && errno != EPIPE) { wl_display_cancel_read(display); return -1; } if (display_poll(display, POLLIN, timeout) == -1) { wl_display_cancel_read(display); return -1; } if (wl_display_read_events(display) == -1) { return -1; } return wl_display_dispatch_pending(display); } static const char usage[] = "usage: %s [options]\n" " -h show this help message\n" " -T set high temperature (default: 6500)\n" " -t set low temperature (default: 4000)\n" " -l set latitude (e.g. 39.9)\n" " -L set longitude (e.g. 116.3)\n" " -d set ramping duration in minutes (default: 60)\n" " -g set gamma (default: 1.0)\n"; int main(int argc, char *argv[]) { tzset(); // Initialize defaults struct context ctx = { .gamma = 1.0, .high_temp = 6500, .low_temp = 4000, .duration = 3600, .state = HIGH_TEMP, }; wl_list_init(&ctx.outputs); int opt; while ((opt = getopt(argc, argv, "hT:t:g:d:l:L:")) != -1) { switch (opt) { case 'T': ctx.high_temp = strtol(optarg, NULL, 10); break; case 't': ctx.low_temp = strtol(optarg, NULL, 10); break; case 'l': ctx.latitude = strtod(optarg, NULL); break; case 'L': ctx.longitude = strtod(optarg, NULL); break; case 'd': ctx.duration = strtod(optarg, NULL) * 60; break; case 'g': ctx.gamma = strtod(optarg, NULL); break; case 'h': default: fprintf(stderr, usage, argv[0]); return opt == 'h' ? EXIT_SUCCESS : EXIT_FAILURE; } } if (ctx.high_temp == ctx.low_temp) { fprintf(stderr, "high (%d) and low (%d) temperature must not be identical\n", ctx.high_temp, ctx.low_temp); return -1; } struct wl_display *display = wl_display_connect(NULL); if (display == NULL) { fprintf(stderr, "failed to create display\n"); return -1; } struct wl_registry *registry = wl_display_get_registry(display); wl_registry_add_listener(registry, ®istry_listener, &ctx); wl_display_roundtrip(display); if (gamma_control_manager == NULL) { fprintf(stderr, "compositor doesn't support wlr-gamma-control-unstable-v1\n"); return EXIT_FAILURE; } struct output *output; wl_list_for_each(output, &ctx.outputs, link) { setup_output(output); } wl_display_roundtrip(display); time_t now = get_time_sec(NULL); update_temperature(&ctx, now); while (display_dispatch_with_timeout(display, wait_adjust(time_to_next_event(&ctx, now))) != -1) { now = get_time_sec(NULL); update_temperature(&ctx, now); } return EXIT_SUCCESS; }