#define _USE_MATH_DEFINES #define _XOPEN_SOURCE 700 #define _POSIX_C_SOURCE 200809L #include #include #include #include "color_math.h" static double SOLAR_START_TWILIGHT = RADIANS(90.833 + 6.0); static double SOLAR_END_TWILIGHT = RADIANS(90.833 - 3.0); static int days_in_year(int year) { int leap = (year % 4 == 0 && year % 100 != 0) || year % 400 == 0; return leap ? 366 : 365; } static double date_orbit_angle(struct tm *tm) { return 2 * M_PI / (double)days_in_year(tm->tm_year + 1900) * tm->tm_yday; } static double equation_of_time(double orbit_angle) { // https://www.esrl.noaa.gov/gmd/grad/solcalc/solareqns.PDF return 4 * (0.000075 + 0.001868 * cos(orbit_angle) - 0.032077 * sin(orbit_angle) - 0.014615 * cos(2*orbit_angle) - 0.040849 * sin(2*orbit_angle)); } static double sun_declination(double orbit_angle) { // https://www.esrl.noaa.gov/gmd/grad/solcalc/solareqns.PDF return 0.006918 - 0.399912 * cos(orbit_angle) + 0.070257 * sin(orbit_angle) - 0.006758 * cos(2*orbit_angle) + 0.000907 * sin(2*orbit_angle) - 0.002697 * cos(3*orbit_angle) + 0.00148 * sin(3*orbit_angle); } static double sun_hour_angle(double latitude, double declination, double target_sun) { // https://www.esrl.noaa.gov/gmd/grad/solcalc/solareqns.PDF return acos(cos(target_sun) / cos(latitude) * cos(declination) - tan(latitude) * tan(declination)); } static time_t hour_angle_to_time(double hour_angle, double eqtime) { // https://www.esrl.noaa.gov/gmd/grad/solcalc/solareqns.PDF return DEGREES((4.0 * M_PI - 4 * hour_angle - eqtime) * 60); } static enum sun_condition condition(double latitude_rad, double sun_declination) { int sign_lat = signbit(latitude_rad) == 0; int sign_decl = signbit(sun_declination) == 0; return sign_lat == sign_decl ? MIDNIGHT_SUN : POLAR_NIGHT; } enum sun_condition calc_sun(struct tm *tm, double latitude, struct sun *sun) { double orbit_angle = date_orbit_angle(tm); double decl = sun_declination(orbit_angle); double eqtime = equation_of_time(orbit_angle); double ha_twilight = sun_hour_angle(latitude, decl, SOLAR_START_TWILIGHT); double ha_daylight = sun_hour_angle(latitude, decl, SOLAR_END_TWILIGHT); sun->dawn = hour_angle_to_time(fabs(ha_twilight), eqtime); sun->dusk = hour_angle_to_time(-fabs(ha_twilight), eqtime); sun->sunrise = hour_angle_to_time(fabs(ha_daylight), eqtime); sun->sunset = hour_angle_to_time(-fabs(ha_daylight), eqtime); return isnan(ha_twilight) || isnan(ha_daylight) ? condition(latitude, decl) : NORMAL; } /* * Illuminant D, or daylight locus, is is a "standard illuminant" used to * describe natural daylight. It is on this locus that D65, the whitepoint used * by most monitors and assumed by wlsunset, is defined. * * This approximation is strictly speaking only well-defined between 4000K and * 25000K, but we stretch it a bit further down for transition purposes. */ static int illuminant_d(int temp, double *x, double *y) { // https://en.wikipedia.org/wiki/Standard_illuminant#Illuminant_series_D if (temp >= 2500 && temp <= 7000) { *x = 0.244063 + 0.09911e3 / temp + 2.9678e6 / pow(temp, 2) - 4.6070e9 / pow(temp, 3); } else if (temp > 7000 && temp <= 25000) { *x = 0.237040 + 0.24748e3 / temp + 1.9018e6 / pow(temp, 2) - 2.0064e9 / pow(temp, 3); } else { errno = EINVAL; return -1; } *y = (-3 * pow(*x, 2)) + (2.870 * (*x)) - 0.275; return 0; } /* * Planckian locus, or black body locus, describes the color of a black body at * a certain temperatures. This is not entirely equivalent to daylight due to * atmospheric effects. * * This approximation is only valid from 1667K to 25000K. */ static int planckian_locus(int temp, double *x, double *y) { // https://en.wikipedia.org/wiki/Planckian_locus#Approximation if (temp >= 1667 && temp <= 4000) { *x = -0.2661239e9 / pow(temp, 3) - 0.2343589e6 / pow(temp, 2) + 0.8776956e3 / temp + 0.179910; if (temp <= 2222) { *y = -1.1064814 * pow(*x, 3) - 1.34811020 * pow(*x, 2) + 2.18555832 * (*x) - 0.20219683; } else { *y = -0.9549476 * pow(*x, 3) - 1.37418593 * pow(*x, 2) + 2.09137015 * (*x) - 0.16748867; } } else if (temp > 4000 && temp < 25000) { *x = -3.0258469e9 / pow(temp, 3) + 2.1070379e6 / pow(temp, 2) + 0.2226347e3 / temp + 0.240390; *y = 3.0817580 * pow(*x, 3) - 5.87338670 * pow(*x, 2) + 3.75112997 * (*x) - 0.37001483; } else { errno = EINVAL; return -1; } return 0; } static double srgb_gamma(double value, double gamma) { // https://en.wikipedia.org/wiki/SRGB if (value <= 0.0031308) { return 12.92 * value; } else { return pow(1.055 * value, 1.0/gamma) - 0.055; } } static double clamp(double value) { if (value > 1.0) { return 1.0; } else if (value < 0.0) { return 0.0; } else { return value; } } static struct rgb xyz_to_srgb(const struct xyz *xyz) { // http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html return (struct rgb) { .r = srgb_gamma(clamp(3.2404542 * xyz->x - 1.5371385 * xyz->y - 0.4985314 * xyz->z), 2.2), .g = srgb_gamma(clamp(-0.9692660 * xyz->x + 1.8760108 * xyz->y + 0.0415560 * xyz->z), 2.2), .b = srgb_gamma(clamp(0.0556434 * xyz->x - 0.2040259 * xyz->y + 1.0572252 * xyz->z), 2.2) }; } static void srgb_normalize(struct rgb *rgb) { double maxw = fmax(rgb->r, fmax(rgb->g, rgb->b)); rgb->r /= maxw; rgb->g /= maxw; rgb->b /= maxw; } struct rgb calc_whitepoint(int temp) { if (temp == 6500) { return (struct rgb) {.r = 1.0, .g = 1.0, .b = 1.0}; } struct xyz wp; if (temp >= 25000) { illuminant_d(25000, &wp.x, &wp.y); } else if (temp >= 4000) { illuminant_d(temp, &wp.x, &wp.y); } else if (temp >= 2500) { double x1, y1, x2, y2; illuminant_d(temp, &x1, &y1); planckian_locus(temp, &x2, &y2); double factor = (4000. - temp) / 1500.; double sinefactor = (cos(M_PI*factor) + 1.0) / 2.0; wp.x = x1 * sinefactor + x2 * (1.0 - sinefactor); wp.y = y1 * sinefactor + y2 * (1.0 - sinefactor); } else { planckian_locus(temp >= 1667 ? temp : 1667, &wp.x, &wp.y); } wp.z = 1.0 - wp.x - wp.y; struct rgb wp_rgb = xyz_to_srgb(&wp); srgb_normalize(&wp_rgb); return wp_rgb; }