#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "wlr-gamma-control-unstable-v1-client-protocol.h" #include "color_math.h" #if defined(SPEEDRUN) static time_t start = 0, offset = 0, multiplier = 1000; static void init_time(void) { tzset(); struct timespec realtime; clock_gettime(CLOCK_REALTIME, &realtime); offset = realtime.tv_sec; char *startstr = getenv("SPEEDRUN_START"); if (startstr != NULL) { start = atol(startstr); } else { start = offset; } char *multistr = getenv("SPEEDRUN_MULTIPLIER"); if (multistr != NULL) { multiplier = atol(multistr); } } static time_t get_time_sec(void) { struct timespec realtime; clock_gettime(CLOCK_REALTIME, &realtime); time_t now = start + ((realtime.tv_sec - offset) * multiplier + realtime.tv_nsec / (1000000000 / multiplier)); struct tm tm; localtime_r(&now, &tm); fprintf(stderr, "time in termina: %02d:%02d:%02d, %d/%d/%d\n", tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_mday, tm.tm_mon+1, tm.tm_year + 1900); return now; } static void adjust_timerspec(struct itimerspec *timerspec) { int diff = timerspec->it_value.tv_sec - offset; timerspec->it_value.tv_sec = offset + diff / multiplier; timerspec->it_value.tv_nsec = (diff % multiplier) * (1000000000 / multiplier); } #else static inline void init_time(void) { tzset(); } static inline time_t get_time_sec(void) { struct timespec realtime; clock_gettime(CLOCK_REALTIME, &realtime); return realtime.tv_sec; } static inline void adjust_timerspec(struct itimerspec *timerspec) { (void)timerspec; } #endif static time_t round_day_offset(time_t now, time_t offset) { return now - ((now - offset) % 86400); } static time_t tomorrow(time_t now, time_t offset) { return round_day_offset(now, offset) + 86400; } static time_t longitude_time_offset(double longitude) { return longitude * 43200 / M_PI; } struct config { int high_temp; int low_temp; double gamma; double longitude; double latitude; bool manual_time; time_t sunrise; time_t sunset; time_t duration; }; enum state { STATE_INITIAL, STATE_NORMAL, STATE_TRANSITION, STATE_STATIC, }; struct context { struct config config; struct sun sun; double longitude_time_offset; enum state state; enum sun_condition condition; time_t dawn_step_time; time_t dusk_step_time; time_t calc_day; bool new_output; struct wl_list outputs; timer_t timer; }; struct output { struct wl_list link; struct context *context; struct wl_output *wl_output; struct zwlr_gamma_control_v1 *gamma_control; int table_fd; uint32_t id; uint32_t ramp_size; uint16_t *table; }; static void print_trajectory(struct context *ctx) { fprintf(stderr, "calculated sun trajectory: "); struct tm dawn, sunrise, sunset, dusk; switch (ctx->condition) { case NORMAL: localtime_r(&ctx->sun.dawn, &dawn); localtime_r(&ctx->sun.sunrise, &sunrise); localtime_r(&ctx->sun.sunset, &sunset); localtime_r(&ctx->sun.dusk, &dusk); fprintf(stderr, "dawn %02d:%02d, sunrise %02d:%02d, sunset %02d:%02d, dusk %02d:%02d\n", dawn.tm_hour, dawn.tm_min, sunrise.tm_hour, sunrise.tm_min, sunset.tm_hour, sunset.tm_min, dusk.tm_hour, dusk.tm_min); break; case MIDNIGHT_SUN: fprintf(stderr, "midnight sun\n"); return; case POLAR_NIGHT: fprintf(stderr, "polar night\n"); return; default: abort(); } } static int anim_kelvin_step = 25; static void recalc_stops(struct context *ctx, time_t now) { time_t day = round_day_offset(now, -ctx->longitude_time_offset); if (day == ctx->calc_day) { return; } time_t last_day = ctx->calc_day; ctx->calc_day = day; enum sun_condition cond = NORMAL; if (ctx->config.manual_time) { ctx->state = STATE_NORMAL; ctx->sun.dawn = ctx->config.sunrise - ctx->config.duration + day; ctx->sun.sunrise = ctx->config.sunrise + day; ctx->sun.sunset = ctx->config.sunset + day; ctx->sun.dusk = ctx->config.sunset + ctx->config.duration + day; goto done; } struct sun sun; struct tm tm = { 0 }; gmtime_r(&day, &tm); cond = calc_sun(&tm, ctx->config.latitude, &sun); switch (cond) { case NORMAL: ctx->state = STATE_NORMAL; ctx->sun.dawn = sun.dawn + day; ctx->sun.sunrise = sun.sunrise + day; ctx->sun.sunset = sun.sunset + day; ctx->sun.dusk = sun.dusk + day; if (ctx->condition == MIDNIGHT_SUN) { // Yesterday had no sunset, so remove our sunrise. ctx->sun.dawn = day; ctx->sun.sunrise = day; } break; case MIDNIGHT_SUN: if (ctx->condition == POLAR_NIGHT) { fprintf(stderr, "warning: direct polar night to midnight sun transition\n"); } if (ctx->state != STATE_NORMAL) { ctx->state = STATE_STATIC; break; } // Borrow yesterday's sunrise to animate into the midnight sun sun.dawn = ctx->sun.dawn - last_day + day; sun.sunrise = ctx->sun.sunrise - last_day + day; ctx->state = STATE_TRANSITION; break; case POLAR_NIGHT: if (ctx->condition == MIDNIGHT_SUN) { fprintf(stderr, "warning: direct midnight sun to polar night transition\n"); } ctx->state = STATE_STATIC; break; default: abort(); } done: ctx->condition = cond; int temp_diff = ctx->config.high_temp - ctx->config.low_temp; ctx->dawn_step_time = (ctx->sun.sunrise - ctx->sun.dawn) * anim_kelvin_step / temp_diff; ctx->dusk_step_time = (ctx->sun.dusk - ctx->sun.sunset) * anim_kelvin_step / temp_diff; print_trajectory(ctx); } static int interpolate_temperature(time_t now, time_t start, time_t stop, int temp_start, int temp_stop) { if (start == stop) { return stop; } double time_pos = (double)(now - start) / (double)(stop - start); if (time_pos > 1.0) { time_pos = 1.0; } else if (time_pos < 0.0) { time_pos = 0.0; } int temp_pos = (double)(temp_stop - temp_start) * time_pos; return temp_start + temp_pos; } static int get_temperature_normal(const struct context *ctx, time_t now) { if (now < ctx->sun.dawn) { return ctx->config.low_temp; } else if (now < ctx->sun.sunrise) { return interpolate_temperature(now, ctx->sun.dawn, ctx->sun.sunrise, ctx->config.low_temp, ctx->config.high_temp); } else if (now < ctx->sun.sunset) { return ctx->config.high_temp; } else if (now < ctx->sun.dusk) { return interpolate_temperature(now, ctx->sun.sunset, ctx->sun.dusk, ctx->config.high_temp, ctx->config.low_temp); } else { return ctx->config.low_temp; } } static int get_temperature_transition(const struct context *ctx, time_t now) { switch (ctx->condition) { case MIDNIGHT_SUN: if (now < ctx->sun.sunrise) { return get_temperature_normal(ctx, now); } return ctx->config.high_temp; default: abort(); } } static int get_temperature(const struct context *ctx, time_t now) { switch (ctx->state) { case STATE_NORMAL: return get_temperature_normal(ctx, now); case STATE_TRANSITION: return get_temperature_transition(ctx, now); case STATE_STATIC: return ctx->condition == MIDNIGHT_SUN ? ctx->config.high_temp : ctx->config.low_temp; default: abort(); } } static time_t get_deadline_normal(const struct context *ctx, time_t now) { if (now < ctx->sun.dawn) { return ctx->sun.dawn; } else if (now < ctx->sun.sunrise) { return now + ctx->dawn_step_time; } else if (now < ctx->sun.sunset) { return ctx->sun.sunset; } else if (now < ctx->sun.dusk) { return now + ctx->dusk_step_time; } else { return tomorrow(now, -ctx->longitude_time_offset); } } static time_t get_deadline_transition(const struct context *ctx, time_t now) { switch (ctx->condition) { case MIDNIGHT_SUN: if (now < ctx->sun.sunrise) { return get_deadline_normal(ctx, now); } // fallthrough case POLAR_NIGHT: return tomorrow(now, -ctx->longitude_time_offset); default: abort(); } } static void update_timer(const struct context *ctx, timer_t timer, time_t now) { time_t deadline; switch (ctx->state) { case STATE_NORMAL: deadline = get_deadline_normal(ctx, now); break; case STATE_TRANSITION: deadline = get_deadline_transition(ctx, now); break; case STATE_STATIC: deadline = tomorrow(now, -ctx->longitude_time_offset); break; default: abort(); } assert(deadline > now); struct itimerspec timerspec = { .it_interval = {0}, .it_value = { .tv_sec = deadline, .tv_nsec = 0, } }; adjust_timerspec(&timerspec); timer_settime(timer, TIMER_ABSTIME, &timerspec, NULL); } static struct zwlr_gamma_control_manager_v1 *gamma_control_manager = NULL; static int create_anonymous_file(off_t size) { char template[] = "/tmp/wlsunset-shared-XXXXXX"; int fd = mkstemp(template); if (fd < 0) { return -1; } int ret; do { errno = 0; ret = ftruncate(fd, size); } while (errno == EINTR); if (ret < 0) { close(fd); return -1; } unlink(template); return fd; } static int create_gamma_table(uint32_t ramp_size, uint16_t **table) { size_t table_size = ramp_size * 3 * sizeof(uint16_t); int fd = create_anonymous_file(table_size); if (fd < 0) { fprintf(stderr, "failed to create anonymous file\n"); return -1; } void *data = mmap(NULL, table_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if (data == MAP_FAILED) { fprintf(stderr, "failed to mmap()\n"); close(fd); return -1; } *table = data; return fd; } static void gamma_control_handle_gamma_size(void *data, struct zwlr_gamma_control_v1 *gamma_control, uint32_t ramp_size) { (void)gamma_control; struct output *output = data; output->ramp_size = ramp_size; if (output->table_fd != -1) { close(output->table_fd); } output->table_fd = create_gamma_table(ramp_size, &output->table); output->context->new_output = true; if (output->table_fd < 0) { fprintf(stderr, "could not create gamma table for output %d\n", output->id); exit(EXIT_FAILURE); } } static void gamma_control_handle_failed(void *data, struct zwlr_gamma_control_v1 *gamma_control) { (void)gamma_control; struct output *output = data; fprintf(stderr, "gamma control of output %d failed\n", output->id); zwlr_gamma_control_v1_destroy(output->gamma_control); output->gamma_control = NULL; if (output->table_fd != -1) { close(output->table_fd); output->table_fd = -1; } } static const struct zwlr_gamma_control_v1_listener gamma_control_listener = { .gamma_size = gamma_control_handle_gamma_size, .failed = gamma_control_handle_failed, }; static void setup_output(struct output *output) { if (output->gamma_control != NULL) { return; } if (gamma_control_manager == NULL) { fprintf(stderr, "skipping setup of output %d: gamma_control_manager missing\n", output->id); return; } output->gamma_control = zwlr_gamma_control_manager_v1_get_gamma_control( gamma_control_manager, output->wl_output); zwlr_gamma_control_v1_add_listener(output->gamma_control, &gamma_control_listener, output); } static void registry_handle_global(void *data, struct wl_registry *registry, uint32_t name, const char *interface, uint32_t version) { (void)version; struct context *ctx = (struct context *)data; if (strcmp(interface, wl_output_interface.name) == 0) { fprintf(stderr, "registry: adding output %d\n", name); struct output *output = calloc(1, sizeof(struct output)); output->id = name; output->wl_output = wl_registry_bind(registry, name, &wl_output_interface, 1); output->table_fd = -1; output->context = ctx; wl_list_insert(&ctx->outputs, &output->link); setup_output(output); } else if (strcmp(interface, zwlr_gamma_control_manager_v1_interface.name) == 0) { gamma_control_manager = wl_registry_bind(registry, name, &zwlr_gamma_control_manager_v1_interface, 1); } } static void registry_handle_global_remove(void *data, struct wl_registry *registry, uint32_t name) { (void)registry; struct context *ctx = (struct context *)data; struct output *output, *tmp; wl_list_for_each_safe(output, tmp, &ctx->outputs, link) { if (output->id == name) { fprintf(stderr, "registry: removing output %d\n", name); wl_list_remove(&output->link); if (output->gamma_control != NULL) { zwlr_gamma_control_v1_destroy(output->gamma_control); } if (output->table_fd != -1) { close(output->table_fd); } free(output); break; } } } static const struct wl_registry_listener registry_listener = { .global = registry_handle_global, .global_remove = registry_handle_global_remove, }; static void fill_gamma_table(uint16_t *table, uint32_t ramp_size, double rw, double gw, double bw, double gamma) { uint16_t *r = table; uint16_t *g = table + ramp_size; uint16_t *b = table + 2 * ramp_size; for (uint32_t i = 0; i < ramp_size; ++i) { double val = (double)i / (ramp_size - 1); r[i] = (uint16_t)(UINT16_MAX * pow(val * rw, 1.0 / gamma)); g[i] = (uint16_t)(UINT16_MAX * pow(val * gw, 1.0 / gamma)); b[i] = (uint16_t)(UINT16_MAX * pow(val * bw, 1.0 / gamma)); } } static void set_temperature(struct wl_list *outputs, int temp, double gamma) { double rw, gw, bw; calc_whitepoint(temp, &rw, &gw, &bw); fprintf(stderr, "setting temperature to %d K\n", temp); struct output *output; wl_list_for_each(output, outputs, link) { if (output->gamma_control == NULL || output->table_fd == -1) { continue; } fill_gamma_table(output->table, output->ramp_size, rw, gw, bw, gamma); lseek(output->table_fd, 0, SEEK_SET); zwlr_gamma_control_v1_set_gamma(output->gamma_control, output->table_fd); } } static int timer_fired = 0; static int timer_signal_fds[2]; static int display_dispatch(struct wl_display *display, int timeout) { if (wl_display_prepare_read(display) == -1) { return wl_display_dispatch_pending(display); } struct pollfd pfd[2]; pfd[0].fd = wl_display_get_fd(display); pfd[1].fd = timer_signal_fds[0]; pfd[0].events = POLLOUT; while (wl_display_flush(display) == -1) { if (errno != EAGAIN && errno != EPIPE) { wl_display_cancel_read(display); return -1; } // We only poll the wayland fd here while (poll(pfd, 1, timeout) == -1) { if (errno != EINTR) { wl_display_cancel_read(display); return -1; } } } pfd[0].events = POLLIN; pfd[1].events = POLLIN; while (poll(pfd, 2, timeout) == -1) { if (errno != EINTR) { wl_display_cancel_read(display); return -1; } } if (pfd[1].revents & POLLIN) { // Empty signal fd char garbage[8]; if (read(timer_signal_fds[0], &garbage, sizeof garbage) == -1 && errno != EAGAIN) { return -1; } } if ((pfd[0].revents & POLLIN) == 0) { wl_display_cancel_read(display); return 0; } if (wl_display_read_events(display) == -1) { return -1; } return wl_display_dispatch_pending(display); } static void timer_signal(int signal) { (void)signal; timer_fired = true; if (write(timer_signal_fds[1], "\0", 1) == -1 && errno != EAGAIN) { // This is unfortunate. } } static int set_nonblock(int fd) { int flags; if ((flags = fcntl(fd, F_GETFL)) == -1 || fcntl(fd, F_SETFL, flags | O_NONBLOCK) == -1) { return -1; } return 0; } static int setup_timer(struct context *ctx) { struct sigaction timer_action = { .sa_handler = timer_signal, .sa_flags = 0, }; if (pipe(timer_signal_fds) == -1) { fprintf(stderr, "could not create signal pipe: %s\n", strerror(errno)); return -1; } if (set_nonblock(timer_signal_fds[0]) == -1 || set_nonblock(timer_signal_fds[1]) == -1) { fprintf(stderr, "could not set nonblock on signal pipe: %s\n", strerror(errno)); return -1; } if (sigaction(SIGALRM, &timer_action, NULL) == -1) { fprintf(stderr, "could not configure alarm handler: %s\n", strerror(errno)); return -1; } if (timer_create(CLOCK_REALTIME, NULL, &ctx->timer) == -1) { fprintf(stderr, "could not configure timer: %s\n", strerror(errno)); return -1; } return 0; } static int wlrun(struct config cfg) { // Initialize defaults struct context ctx = { .sun = { 0 }, .condition = SUN_CONDITION_LAST, .state = STATE_INITIAL, .config = cfg, }; if (!cfg.manual_time) { ctx.longitude_time_offset = longitude_time_offset(cfg.longitude); } wl_list_init(&ctx.outputs); if (setup_timer(&ctx) == -1) { return EXIT_FAILURE; } struct wl_display *display = wl_display_connect(NULL); if (display == NULL) { fprintf(stderr, "failed to create display\n"); return EXIT_FAILURE; } struct wl_registry *registry = wl_display_get_registry(display); wl_registry_add_listener(registry, ®istry_listener, &ctx); wl_display_roundtrip(display); if (gamma_control_manager == NULL) { fprintf(stderr, "compositor doesn't support wlr-gamma-control-unstable-v1\n"); return EXIT_FAILURE; } struct output *output; wl_list_for_each(output, &ctx.outputs, link) { setup_output(output); } wl_display_roundtrip(display); time_t now = get_time_sec(); recalc_stops(&ctx, now); update_timer(&ctx, ctx.timer, now); int temp = get_temperature(&ctx, now); set_temperature(&ctx.outputs, temp, ctx.config.gamma); int old_temp = temp; while (display_dispatch(display, -1) != -1) { if (timer_fired) { timer_fired = false; now = get_time_sec(); recalc_stops(&ctx, now); update_timer(&ctx, ctx.timer, now); if ((temp = get_temperature(&ctx, now)) != old_temp) { old_temp = temp; ctx.new_output = false; set_temperature(&ctx.outputs, temp, ctx.config.gamma); } } else if (ctx.new_output) { ctx.new_output = false; set_temperature(&ctx.outputs, temp, ctx.config.gamma); } } return EXIT_SUCCESS; } static int parse_time_of_day(const char *s, time_t *time) { struct tm tm = { 0 }; if (strptime(s, "%H:%M", &tm) == NULL) { return -1; } *time = tm.tm_hour * 3600 + tm.tm_min * 60 + timezone; return 0; } static const char usage[] = "usage: %s [options]\n" " -h show this help message\n" " -v show the version number\n" " -t set low temperature (default: 4000)\n" " -T set high temperature (default: 6500)\n" " -l set latitude (e.g. 39.9)\n" " -L set longitude (e.g. 116.3)\n" " -S set manual sunrise (e.g. 06:30)\n" " -s set manual sunset (e.g. 18:30)\n" " -d set manual duration in seconds (e.g. 1800)\n" " -g set gamma (default: 1.0)\n"; int main(int argc, char *argv[]) { #ifdef SPEEDRUN fprintf(stderr, "warning: speedrun mode enabled\n"); #endif init_time(); struct config config = { .latitude = NAN, .longitude = NAN, .high_temp = 6500, .low_temp = 4000, .gamma = 1.0, }; int opt; while ((opt = getopt(argc, argv, "hvt:T:l:L:S:s:d:g:")) != -1) { switch (opt) { case 't': config.low_temp = strtol(optarg, NULL, 10); break; case 'T': config.high_temp = strtol(optarg, NULL, 10); break; case 'l': config.latitude = strtod(optarg, NULL); break; case 'L': config.longitude = strtod(optarg, NULL); break; case 'S': if (parse_time_of_day(optarg, &config.sunrise) != 0) { fprintf(stderr, "invalid time, expected HH:MM, got %s\n", optarg); return EXIT_FAILURE; } config.manual_time = true; break; case 's': if (parse_time_of_day(optarg, &config.sunset) != 0) { fprintf(stderr, "invalid time, expected HH:MM, got %s\n", optarg); return EXIT_FAILURE; } config.manual_time = true; break; case 'd': config.duration = strtol(optarg, NULL, 10); break; case 'g': config.gamma = strtod(optarg, NULL); break; case 'v': printf("wlsunset version %s\n", WLSUNSET_VERSION); return EXIT_SUCCESS; case 'h': default: fprintf(stderr, usage, argv[0]); return opt == 'h' ? EXIT_SUCCESS : EXIT_FAILURE; } } if (config.high_temp <= config.low_temp) { fprintf(stderr, "high temp (%d) must be higher than low (%d) temp\n", config.high_temp, config.low_temp); return EXIT_FAILURE; } if (config.manual_time) { if (!isnan(config.latitude) || !isnan(config.longitude)) { fprintf(stderr, "latitude and longitude are not valid in manual time mode\n"); return EXIT_FAILURE; } } else { if (config.latitude > 90.0 || config.latitude < -90.0) { fprintf(stderr, "latitude (%lf) must be in interval [-90,90]\n", config.latitude); return EXIT_FAILURE; } config.latitude = RADIANS(config.latitude); if (config.longitude > 180.0 || config.longitude < -180.0) { fprintf(stderr, "longitude (%lf) must be in interval [-180,180]\n", config.longitude); return EXIT_FAILURE; } config.longitude = RADIANS(config.longitude); } return wlrun(config); }