---
layout: default
title: Security Measures
parent: Security
nav_order: 1
---
# Security Measures
## Protection against cookie theft
Authelia sets several key cookie attributes to prevent cookie theft:
1. `HttpOnly` is set forbidding client-side code like javascript from access to the cookie.
2. `Secure` is set forbidding the browser from sending the cookie to sites which do not use the https scheme.
3. `SameSite` is by default set to `Lax` which prevents it being sent over cross-origin requests.
Read about these attributes in detail on the
[MDN](https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie).
## Protection against multi-domain cookie attacks
Since Authelia uses multi-domain cookies to perform single sign-on, an attacker who poisoned a user's DNS cache can
easily retrieve the user's cookies by making the user send a request to one of the attacker's IPs.
This is technically mitigated by the `Secure` attribute set in cookies by Authelia, however it's still advisable to
only use HTTPS connections with valid certificates and enforce it with HTTP Strict Transport Security ([HSTS]) which
will prevent domains from serving over HTTP at all as long as the user has visited the domain before. This means even
if the attacker poisons DNS they are unable to get modern browsers to connect to a compromised host unless they can also
obtain the certificate.
Note that using [HSTS] has consequences. That's why you should read the blog post nginx has written on [HSTS].
## Protection against username enumeration
Authelia adaptively delays authentication attempts based on the mean (average) of the previous 10 successful attempts
in addition to a small random interval of time. The result of this delay is that it makes it incredibly difficult to
determine if the unsuccessful login was the result of a bad password, a bad username, or both. The random interval of
time is anything between 0 milliseconds and 85 milliseconds.
When Authelia first starts it assumes the last 10 attempts took 1000 milliseconds each. As users login successfully it
quickly adjusts to the actual time the login attempts take. This process is independent of the login backend you have
configured.
The cost of this is low since in the instance of a user not existing it just stops processing the request to delay the
login. Lastly the absolute minimum time authentication can take is 250 milliseconds. Both of these measures also have
the added effect of creating an additional delay for all authentication attempts increasing the time that a brute-force
attack will take, this combined with regulation greatly delays brute-force attacks and the effectiveness of them in
general.
## Protections against password cracking (File authentication provider)
Authelia implements a variety of measures to prevent an attacker cracking passwords if they somehow obtain the file used
by the file authentication provider, this is unrelated to LDAP auth.
First and foremost Authelia only uses very secure hashing algorithms with sane and secure defaults. The first and
default hashing algorithm we use is Argon2id which is currently considered the most secure hashing algorithm. We also
support SHA512, which previously was the default.
Secondly Authelia uses salting with all hashing algorithms. These salts are generated with a random string generator,
which is seeded every time it's used by a cryptographically secure 1024bit prime number. This ensures that even if an
attacker obtains the file, each password has to be brute forced individually.
Lastly Authelia's implementation of Argon2id is highly tunable. You can tune the key length, salt used, iterations
(time), parallelism, and memory usage. To read more about this please read how to
[configure](../configuration/authentication/file.md) file authentication.
## User profile and group membership always kept up-to-date (LDAP authentication provider)
This measure is unrelated to the File authentication provider.
Authelia by default refreshes the user's profile and membership every 5 minutes. This ensures that if you alter a users
groups in LDAP that their new groups are obtained relatively quickly in order to adjust their access level for
applications secured by Authelia.
Additionally, it will invalidate any session where the user could not be retrieved from LDAP based on the user filter,
for example if they were deleted or disabled provided the user filter is set correctly. These updates occur when a user
accesses a resource protected by Authelia. This means you should ensure disabled users or users with expired passwords
are not obtainable using the LDAP filter, the default filter for Active Directory implements this behaviour.
LDAP implementations vary, so please ask if you need some assistance in configuring this.
These protections can be [tuned](../configuration/authentication/ldap.md#refresh-interval) according to your security
policy by changing refresh_interval, however we believe that 5 minutes is a fairly safe interval.
## Storage security measures
We force users to encrypt vulnerable data stored in the database. It is strongly advised you do not give this encryption
key to anyone. In the instance of a database installation that multiple users have access to, you should aim to ensure
that users who have access to the database do not also have access to this key.
The encrypted data in the database is as follows:
| Table | Column | Rational |
|:-------------------:|:----------:|:------------------------------------------------------------------------------------------------------:|
| totp_configurations | secret | Prevents a [Leaked Database](#leaked-database) or [Bad Actors](#bad-actors) from compromising security |
| webauthn_devices | public_key | Prevents [Bad Actors](#bad-actors) from compromising security |
### Leaked Database
A leaked database can reasonably compromise security if there are credentials that are not encrypted. Columns encrypted
for this purpose prevent this attack vector.
### Bad Actors
A bad actor who has the SQL password and access to the database can theoretically change another users credential, this
theoretically bypasses authentication. Columns encrypted for this purpose prevent this attack vector.
A bad actor may also be able to use data in the database to bypass 2FA silently depending on the credentials. In the
instance of the U2F public key this is not possible, they can only change it which would eventually alert the user in
question. But in the case of TOTP they can use the secret to authenticate without knowledge of the user in question.
### Encryption key management
You must supply the encryption key in the recommended method of a [secret](../configuration/secrets.md) or in one of
the other methods available for [configuration](../configuration/index.md#configuration).
If you wish to change your encryption key for any reason you can do so using the following steps:
1. Run the `authelia --version` command to determine the version of Authelia you're running and either download that
version or run another container of that version interactively. All the subsequent commands assume you're running
the `authelia` binary in the current working directory. You will have to adjust this according to how you're running
it.
2. Run the `./authelia storage encryption change-key --help` command.
3. Stop Authelia.
- You can skip this step, however note that any data changed between the time you make the change and the time when
you stop Authelia i.e. via user registering a device; will be encrypted with the incorrect key.
4. Run the `./authelia storage encryption change-key` command with the appropriate parameters.
- The help from step 1 will be useful here. The easiest method to accomplish this is with the `--config`,
`--encryption-key`, and `--new-encryption-key` parameters.
5. Update the encryption key Authelia uses on startup.
6. Start Authelia.
## Notifier security measures (SMTP)
The SMTP Notifier implementation does not allow connections that are not secure without changing default configuration
values.
As such all SMTP connections require the following:
1. TLS Connection (STARTTLS or SMTPS) has been negotiated before authentication or sending emails (unauthenticated
connections require it as well)
2. Valid X509 Certificate presented to the client during the TLS handshake
There is an option to disable both of these security measures however they are **not recommended**.
The following configuration options exist to configure the security level in order of most preferable to least
preferable:
### Configuration Option: certificates_directory
You can [configure a directory](../configuration/miscellaneous.md#certificates_directory) of certificates for Authelia
to trust. These certificates can either be CA's or individual public certificates that should be trusted. These
are added in addition to the environments PKI trusted certificates if available. This is useful for trusting a
certificate that is self-signed without drastically reducing security. This is the most recommended workaround to not
having a valid PKI trusted certificate as it gives you complete control over which ones are trusted without disabling
critically needed validation of the identity of the target service.
Read more in the [documentation](../configuration/miscellaneous.md#certificates_directory) for this option.
### Configuration Option: tls.skip_verify
The [tls.skip_verify](../configuration/notifier/smtp.md#tls) option allows you to skip verifying the certificate
entirely which is why [certificates_directory](#configuration-option-certificates_directory) is preferred over this.
This will effectively mean you cannot be sure the certificate is valid which means an attacker via DNS poisoning or MITM
attacks could intercept emails from Authelia compromising a user's security without their knowledge.
### Configuration Option: disable_require_tls
Authelia by default ensures that the SMTP server connection is secured via STARTTLS or SMTPS prior to sending sensitive
information. The [disable_require_tls](../configuration/notifier/smtp.md#disable_require_tls) disables this requirement
which means the emails are sent in plain text. This is the least secure option as it effectively removes the validation
of SMTP certificates and removes the encryption offered by the STARTTLS/SMTPS connection all together.
This means not only can the vulnerabilities of the [skip_verify](#configuration-option-tlsskip_verify) option be
exploited, but any router or switch along the route of the email which receives the packets could be used to silently
exploit the plain text nature of the email. This is only usable currently with authentication disabled (comment out the
password) and as such is only an option for SMTP servers that allow unauthenticated relay (bad practice).
### SMTPS vs STARTTLS
All connections start as plain text and are upgraded via STARTTLS. SMTPS is an exception to this rule where the
connection is over TLS. As SMTPS is deprecated, the only way to configure this is to set the SMTP
[port](../configuration/notifier/smtp.md#port) to the officially recognized SMTPS port of 465 which will cause Authelia
to automatically consider it to be a SMTPS connection. As such your SMTP server, if not offering SMTPS, should not be
listening on port 465 which is bad practice anyway.
## Protection against open redirects
Authelia protects your users against open redirect attacks by always checking if redirection URLs are pointing
to a subdomain of the domain protected by Authelia. This prevents phishing campaigns tricking users into visiting
infected websites leveraging legit links.
## Mutual TLS
For the best security protection, configuration with TLS is highly recommended. TLS is used to secure the connection between
the proxies and Authelia instances meaning that an attacker on the network cannot perform a man-in-the-middle attack on those
connections. However, an attacker on the network can still impersonate proxies but this can be prevented by configuring mutual
TLS.
Mutual TLS brings mutual authentication between Authelia and the proxies. Any other party attempting to contact Authelia
would not even be able to create a TCP connection. This measure is recommended in all cases except if you already configured
some kind of ACLs specifically allowing the communication between proxies and Authelia instances like in a service mesh or
some kind of network overlay.
To configure mutual TLS, please refer to [this document](../configuration/server.md#client_certificates)
## Additional security
### Reset Password
It's possible to disable the reset password functionality and is an optional adjustment to consider for anyone wanting
to increase security. See the [configuration](../configuration/authentication/index.md#disable_reset_password) for more
information.
### Session security
We have a few options to configure the security of a session. The main and most important one is the session secret.
This is used to encrypt the session data when it is stored in the [Redis](../configuration/session/redis.md) key value
database. The value of this option should be long and as random as possible. See more in the
[documentation](../configuration/session/index.md#secret) for this option.
The validity period of session is highly configurable. For example in a highly security conscious domain you could
set the session [remember_me_duration](../configuration/session/index.md#remember_me_duration) to 0 to disable this
feature, and set the [expiration](../configuration/session/index.md#expiration) to 2 hours and the
[inactivity](../configuration/session/index.md#inactivity) of 10 minutes. Configuring the session security in this
manner would mean if the cookie age was more than 2 hours or if the user was inactive for more than 10 minutes the
session would be destroyed.
### Additional proxy protection measures
You can also apply the following headers to your proxy configuration for improving security. Please read the
relevant documentation for these headers before applying them blindly.
#### nginx
```
# We don't want any credentials / TOTP secret key / QR code to be cached by
# the client
add_header Cache-Control "no-store";
add_header Pragma "no-cache";
# Clickjacking / XSS protection
# We don't want Authelia's login page to be rendered within a ,
#